neutral and acidic fraction and the basic CHCl₃-soluble fraction separated into individual constituents by a combination of column chromatography with benzene, benzene-EtOAc, CHCl₃ and CHCl₃-MeOH.

Elution with CHCl, afforded a compound A. 48 mg (0.0006% root, fresh wt. not present in the aerial parts) mp 200-201° from EtOH (lit. [2] 196-198° from CHCl₃-MeOH), M^+ m/e 367, 111 ($C_{20}H_{17}NO_6$, found 367, 106) UV $\lambda_{\text{max}}(\text{EtOH})$ (log ε): 207 nm (4·56), 239 (4·46), 290 (4·38), 317 (4·35), UV λ_{max} (EtOH + 1N HCl). 245 nm, 297.5, 337, 380 (Sh). IR (KBr) v_{max} cm⁻¹, 2945, 2880, 1685, 1625, 1590. NMR (CDCl₃, δ ppm) 2·39 (3H, S, N-Me), 2.50-3.50 (4H, m, -CH₂-CH₂-), 4.76, 5.16 (2H, each ABq, J 16 Hz, Ar-CH₂-O), 5.85 (2H, s, O-CH₂-O), 6.08 (2H, s, O-CH₂-O), 6.50, 6.60 (each 1H, s, aromatic proton), 6.83 (1H, d, J 8 Hz, aromatic proton) and 7.76 (1H, d, J 8 Hz, aromatic proton). Mass fragmentation: M⁺ m/e 367 (7%), 352 (5%), 205 (5%), 190 (85%), 188 (77%), 178 (86%), 162 (78%), 151 (100%). R_f . 0·52 (C_6H_6 – EtOAc = 2:1), 0·73 ($CHCl_3$ –MeOH = 20:1) on silica gel H. These physical data showed A was identical with the isoquinoline alkaloid, corydalispirone* [2] and was confirmed by its identity with an authentic sample. This alkaloid has been previously reported only from Corydalis incisa.

Elution with benzene afforded pale yellow crystals, B, (aerial part 1.5 mg 0.00018% of fr. wt, root 15 mg 0.0018% of fr. wt.) mp 278-280° (decomp. from CHCl₃-EtOH), M^+ m/e 317, 067 ($C_{19}H_{11}O_4N$ found 317, 069), UV λ_{max} (EtOH) nm 215, 244, 282, 296, 329, IR (KBr) ν_{max} 2890, 1640, 1590, 1500, 1450, NMR (CF₃COOD, δ ppm), 6.22, 6.49 (2H, each s, O-CH₂-O), 7.41, 7.94 (1H, each s), 7.92 and 8.44 (1H, each d, J 8 Hz), 8.14 and 8.44 (1H, each d, J 8 Hz) and 9.50 (1H, d, J 8 Hz). Mass fragmentation; M+ 317 (100%), 259 (7·1%), 202 (11·5%), $174 (5.3^{\circ})$, 158 (11.5%). These physical data for B agreed with those of authentic norsanguinarine isolated from the callus [3], and this base was identified by comparison with an authentic sample. Later this base has been isolated from a papaveraceous plant, Argemone albiflora [4].

Elution with CHCl₃ afforded plates, C, 4·5 mg (0·00054% fr. wt aerial part, not identified in root) mp 184–185·5° (from EtOH), NMR spectrum (CDCl₃, δ ppm), 2·54 (3H, s, N–Me), 3·70 (3H, s, OMe), 3·92 (6H, s, OMe), 6·70 (1H, s, aromatic), 6·84 (2H, s, aromatic) and 8·80 (1H, s, OH, disappeared after D₂O exchange),

these values were almost same with authentic isocorydine [5]. Mass fragmentation M^+ 341 (60%), 326 (M^+ -15, 100%), 310 (M^+ -31, 49%), 298 (M^+ -43, 4.4%) were identical with those of an authentic sample.

The CHCl₃-MeOH fraction was purified by preparative TLC (Si gel, benzene-MeOH = 3:2), followed by recrystallization from EtOH affording colorless prisms, D, mp 166-168° (macro) (172-173° micro, lit. [6] 169-171°). A mixed melting point with an authentic sample of α -allocryptopine mp 155-157° (macro) (161-163° micro) gave 164-166° (macro). The IR absorption spectrum of the base D, showed some minor differences to that of α -allocryptopine in KBr preparation, but gave identical spectra in CHCl₃. The NMR and mass fragmentation pattern were identical with α -allocryptopine, on the basis of the above results therefore D may be the so-called β -allocryptopine [6].

In addition, protopine, α -allocryptopine, dihydrosanguinarine, sanguinarine; oxysanguinarine and chelerythrine, and megnoflorine (from the quaternary base fraction) were identified by direct comparison (NMR, MS, TLC etc.) with authentic samples in a similar manner as reported previously [3, 7]. These alkaloids were identified in both parts of the plant.

The isolation and identification of all these alkaloids, except protopine and α -allocryptopine are first report from this species.

Acknowledgements—We thank Prof T. Furuya, Kitasato University for kind encouragement, Prof I. Nishioka and Dr. G. Nonaka, Kyushu University, Prof H. Ishii, Chiba University, Dr. S. Naruto, Research Laboratories, Dainippon Pharmaceutical Co., Ltd. for kind supply of samples. Thanks are also due to the members of Central Analytical Laboratory of this University for NMR and MS measurements.

REFERENCES

- Kojima, K. and Ando, Y. (1951) J. Pharm. Soc. Jap. 71, 625.
- Nonaka, G. and Nishioka, I. (1975) Chem. Pharm. Bull. 23, 294.
- 3. Furuya, T., Ikuta, A. and Syono, K. (1972) Phytochemistry 11, 3041.
- Haisova, K., Slavik, J. and Dolejs, L. (1973) Coll. Czech. Chem. Commun. 38, 3312.
- Edwards, O. E. and Handa, K. L. (1961) Can. J. Chem. 39, 1801.
- Soine, T. O. and Willette, R. E. (1960) J. Am. Pharm. Assoc. 49, 368.
- Ikuta, A., Syono, K. and Furuya, T. (1974) Phytochemistry 13, 2175.

Phytochemistry, 1976, Vol. 15, pp 578-579. Pergamon Press Printed in England

ALKALOIDS AND COUMARINS FROM ZANTHOXYLUM FLAVUM: DIHYDRORUTAECARPINE, A NOVEL β -INDOLOQUINAZOLINE ALKALOID*

PETER G. WATERMAN

Department of Pharmaceutical Chemistry, University of Strathclyde, Glasgow G1 1XW, Scotland (Received 26 September 1975)

Key Word Index—Zanthoxylum flavum; Rutaceae; alkaloids; β -indoloquinazoline, dihydrorutaecarpine, canthin-6-one; benzophenanthridine; chelerythrine; nitidine; furanocoumarin, imperatorin, chemotavonomy.

Plant. Zanthoxylum flavum Vahl. (syn. Fagara flava Krug. et Urb.) [1]. Voucher. Jimenez 5980 has been deposited at the herbarium of the Royal Botanic Garden, Edinburgh. Source. Hill sides above La Cuesta, Santiago

^{*} Corydalispirone was reported recently by G. Nonaka and I. Nishioka [2].

579 Short Reports

Province, Dominican Republic. Uses. The wood, known commercially as Jamaican Satinwood, is a timber of high quality [2]. Previous work. The coumarins xanthotoxin, psoralen and suberosin [3] and uncharacterised alkaloids [4] from the wood. Plant parts examined. Root and

Present work. Soxhlet extraction of the stem bark (200 g) with petrol (40-60°), concn of the extract and column chromatography over Al₂O₃, eluting with EtOAc, gave imperatorin (75 mg) mp 101° (lit. [5] $102-103^{\circ}$). Found M⁺ 270.0899, $C_{16}H_{14}O_4$ requires 270.0892. UV, IR, MS, PMR, were all in close agreement with published data [5-7]. No other compounds were isolated from petrol or MeOH extracts of the stem bark but traces of alkaloid were detected.

The root bark (100 g) was similarly extracted with petrol, then CHCl₃, then MeOH. On shaking with 1N HCl the concn. petrol extract gave a yellow ppt. of chelerythrine chloride (14 mg) mp 200°, identical in all respects (UV, IR, TLC, mmp) with an authentic sample. Basification of the acid layer with NH4OH and reextraction into CH₂Cl₂ gave canthin-6-one (6 mg) mp 165°, identical in all respects (UV, IR, TLC, mmp) with an authentic sample.

Similar treatment of the CHCl3 extract gave, on addition of HCl, a yellow-green ppt. of nitidine chloride (46 mg) mp 220°, identical in all respects (UV, IR, TLC, mmp) with an authentic sample.

Re-examination of the original petrol extract from the root bark revealed the presence of a further alkaloid which was purified by column chromatography over Si gel, eluting with CHCl₃, to give white needles (13 mg) mp 168° . [α]_D²⁵ -21 (CHCl₃; c 0·1). Found M⁺ $289 \cdot 1218$, C₁₈H₁₅N₃O requires $289 \cdot 1215$. UV $\lambda_{max}^{(EiOH)}$ nm (log ϵ): 275(3·89), 292(3·76), 304sh(3·45), 316(3·24). IR ν_{max} (KCl) cm⁻¹: 3350–3320 (NH), 1680 (CO), 1610, 1470, 1375. PMR (60 MHz, CDCl₃): δ 3.28 (2H, t, J 7Hz, CH₂-14), 4·30 (2H, t, J 7Hz, CH₂-15), 6·90 (1H, d, J 2Hz, H-6), 7.30-8.60 (8H, m, $8 \times$ H-Ar), >10.00 (2H, both replaceable by $D_2O_1 \times N-H$). MS: m/e 289(14%), 288(2), 287(0.6), 170(0.4), 169(1.0), 159(1.5), 147(3.3), 146(1·4), 143(100), 142(8·3), 130(33), 119(0·4), 115(5·6). The occurrence of $3 \times N$ in the molecule suggested the alkaloid was of the rare β -indologuinazoline class known only from the Rutaceae [8]. This assumption was sustained by examination of IR (CO and NH) and MS. The complex fragmentation pattern of the latter can be rationalised by postulating fission of the β -indoloquinazoline nucleus between C₆-N₇ and C₁₂-N₁₃ or between C_{5a} - C_{6} and either N_{13} - C_{14} or C_{14} - C_{15} . The occurrence of the indolic fragments at m/e 143 and m/e 130 as major ions is in accord with findings for similar compounds [9,10]. The PMR confirmed both the presence of the $> C-CH_2-CH_2-N < moiety[11]$ and the lack of any substitution on the molecule. The combined spectral data thus suggested that this was a novel member of the β indoloquinazoline class of alkaloids in which the empirical formula C₁₈H₁₅N₃O had been previously unknown. From the lack of substituents, presence of 2 × NH, optical activity and UV, in which λ_{max} is in close agreement with evodiamine (1), it seems that this new alkaloid must be dihydrorutaecarpine (2).

Direct evidence for structure (2) was obtained by reduction with LiAlH₄ in dry Et₂O [12,13]. Refluxing for 10 hr gave, on recrystallisation from EtOH, indolo-[2',3':3,4]-pyrido-2, 1b-quinazoline, mp 162° (lit. [12] 161-163°), identical in all respects (UV, IR, mmp) with material obtained on reduction of rutaecarpine by the same method. Further evidence for structure (2) was obtained from methylation with MeI in boiling MeOH. A mixture was obtained the major component of which was identical (TLC-3 systems) with evodiamine.

Examination of the partially purified MeOH extract of the root bark by methods previously described [14] revealed the presence of small amounts of quaternary alkaloids of which one was tembetarine (TLC, UV).

Biological significance. Whilst the type and distribution of alkaloids in Z. flavum appears typical of the genus [8,15] the presence of canthin-6-one and dihydrorutaecarpine may have additional systematic significance. Certainly the recent suggestion [16] that a close biochemical relationship exists between Central American and South East Asian species is supported by the isolation of a β -indoloquinazoline from Z. flavum.

Acknowledgements—The author wishes to extend his thanks to Dr. J. Jimenez, Calle Maximo Gomez 34, Santiago de los Caballeros, Dominican Republic, for the collection and identification of plant material and to Dr. R. D. Waigh, Department of Pharmaceutical Chemistry, University of Strathclyde, for PMR spectra.

REFERENCES

- 1. Wilson, P. (1911) North American Flora, Vol. 25, p. 196; Adams, C. D. (1972) Flowering Plants of Jamaica, p. 385, University of the West Indies, Mona, Jamaica.
- 2. Department of Scientific and Industrial Research, London (1956) Handbook of Hardwoods, p. 209, H.M.S.O.
- King, J. E., Housley, J. R. and King, T. J. (1954) J. Chem. Soc. 1392.
- Auld, S. J. M. and Pickles, S. S. (1912) J. Chem. Soc. 1052.
- Neilsen, B. E. (1970) Dansk. Tidsskr. Farm. 44, 111.
- Dreyer, D. L. (1965) J. Org. Chem. 30, 749.
- Soine, T. O. and Lee, K-H. (1970) J. Pharm. Sci. 59, 681.
- Waterman, P. G. (1975) Biochem. Syst. Ecol. 3, 149.
- Gribble, G. W. and Nelson, R. B. (1974) J. Org. Chem. **39,** 1845.
- 10. Danieli, B., Palmisano, G., Russo, G. and Ferrari, G. (1973) Phytochemistry 12, 2521.
- 11. Danieli, B., Palmisano, G., Rainoldi, G. and Russo, G. (1974) Phytochemistry 13, 1603.
- 12. Terzyan, A. G., Safrazbekyan, R. R., Khazhakyan, L. V. and Tatevosyan, G. T. (1961) Izv. Akad. Nauk. Arm. S.S.R. Khim. Nauki. 14, 387 (through CA (1962) 57, 16532b).
- 13. Dora-Horvath, K. and Clauder, A. (1974) Acta Pharm. Hung. 44, suppl. p. 80 (through CA (1974) 81, 136438z). 14. Fish, F. and Waterman, P. G. (1972) Phytochemistry 11,
- 15. Fish, F. and Waterman, P. G. (1973) Taxon 22, 177.
- Waterman, P. G. (1975) A Review of the Chemosystematics of the genus Zanthoxylum in South East Asia, in Roles and Goals of Tropical Botanic Gardens (Stone, B. C. ed.), University of Malaya, Kuala Lumpur.

^{*} Part 7 in the series "Chemosystematics in the Rutaceae". For Part 6 see ref. [8].